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SUMMARY

This paper can be divided into essentially two different parts. The

first part contains a qualitative discussion of the one-electron approxima-

tion and a rough review of the Bohm-Pines, van Hove-Hugenholtz and

Luttinger work. These works can be considered as representative of that

part of current many-body literature which aims directly at the behavior

of quasi-particles in normal many-fermion systems.

The second part of this paper tries to elaborate a specific method

to handle quasi-particles. The method is formally similar to the usual

Hartree-Fock scheme and it was chosen out of many possible approaches

partly because the author has been actively working with it and partly

because it is fairly simple and still illustrates the ideas and scope of present

day many-body theories.

Some of the material given here has not been published earlier to

the knowledge of the author. That goes for the iteration scheme developed

to approximate the self-energy operator M , and also for the evaluation and

discussion of the properties of the first non-trivial iteration step MO )

for some different physical systems, particularly for the hydrogen-like

levels of alkali atoms. It is further shown that the Bohm-Pines treatment

of single-particle properties corresponds to an "adiabatic" approximation

of M( 1) . This approximation of M ( I) is however able to deal naturally

also with the periodic lattice case.
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INTRODUCTION

The name one-electron approximation has almost become synonymous

with the Hartree-Fock method (HF). Here we will, however, use that name

for any scheme where a one-particle equation generates orbitals and orbital

energies which are then used to describe the properties of the system.

When the first one-electron approximation was presented by Hartree 1

in 1928, it was received with considerable reluctance. Already the same year

Slater ) made a careful analysis of the errors that could be expected and

showed that the amount of agreement obtained with experiment was by no

means fortuitous. Despite that the Hartree equation was not generally

accepted and used until a few years later when Slater 3) and Fock 4) independent-

ly showed that the Hartree equation augmented with an exchange term could

be derived from the variational principle using a Slater determinant as trial

function.

The HF method has had great success both in treating atoms, molecules

and the band structure of solids. Concerning the band structure of solids, it

is really not at all obvious that the HF method, considered to be founded on

the variational principle, should give sensible results. The band structure

describes the excitation energies which form a continuum. An excitation energy

is obtained by subtracting one total energy from another. The variational

principle tells us that each total energy is the best possible, which means it

has a finite and quite large error. Thus the variational principle furnishes no

direct reason why the HF method should give a sensible band structure. This

kind of shortcoming of the variational principle also occurs, to a lesser extent,

for the cohesive energies of solids and for the excitation energies of atoms

and molecules. It is the purpose of this paper to try to explain, from a many-

-particle standpoint, why and when the HF equations give a reasonable descrip-

tion of excitation spectra and also to describe different attempts to improve

the HF equation by a "correlation potential" or "polarization potential".

In the HF method the total wavefunction is described by one Slater

determinant. A Slater determinant is really a very poor approximation to the

true wave function and it can indeed by shown that the overlap integral be-

tween any Slater determinant and the true wave function tends to zero

exponentially with the number of particles in any normal system. In a Slater

determinant there is some correlation between particles of the same spin

brought about by thc Pauli principle (the Fermi hole), but correlation between
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particles of opposite spin is totally missing.)This effect can be studied for

e.g. helium where very accurate wave functions have been calculated. If

one keeps the position of one electron fixed and plots the wave function

against the distance r between the two electrons there results the so

called correlation hole or Coulomb hole, which for helium is a curve fair-

ly well approximated by the expression C(I + r) up to r of the order of

one atomic unit.

Though this correlation feature cannot be incorporated in any Slater

determinant it can be brought into the HF equation itself by adding a correla-

tion term. This cannot be justified if one looks upon the HF eq. as some-

thing providing orbitals for a complete N electron wave function but it is

very reasonable if one takes the original intuitive standpoint Hartree had

when first deriving the equations. Then one focuses attention on one specific

electron and that electron should not see the average potential but there

should be a correlation hole in the charge distribution of the other electrors.

There are several treatments of such polarization effects. The simplest

example is the case of an atom where one electron has an orbit lying outside

the remaining ion. The polarization of the ion causes an extra term in the

potential equal to -!al/r 4 
, where a is the ion polarizability. Another

famous example is the case of an electron moving in a highly excited state

round a charged impurity in a semiconductor. The energy levels are then

described quite accurately by a hydrogen-like formula with an effective mass

and a dielectric constant. These two cases have been justified rigorously,

the first by van Vleck and Whitelaw and independently Mayer and Mayer 6)

in 1933 and the second by Kohn 7) in 1957. The sirgle particle equations in

these cases are really equations for quasiparticles or dressed particles,

that is equations for a bare electron and a polarization cloud.

It was more difficult however to justify a polarization term in band

calculations of crystals. Attempts were made by Callaway 8) in 1957 to

include polarization of the ion cores in alkali metals and by Wohlfarth 9) in

1950 to use a screened Coulomb potential in the exchange term of an

electron gas. It is only quite recently that one-electron equations with a

polarization term for solids have obtained a proper interpretation.
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THE BOHM-PINES COLLECTIVE APPROACH

A large step forward towards the understanding of the behavior of

electrons in a metal was made with the work by Bohm and Pines 10) in 1953,

which was extended and refined mainly by Pines. The basic idea was to treat

first the collective behavior, i.e. the plasma vibrations of the electrons.

The plasma vibrations are brought about by the long range of the coulomb

force and are responsible for the long range correlation between the elec-

trons. It is a high frequency phenomenon corresponding to energies of

typically 10 to 20 eV, and it can be observed by measuring energy loss of

fast electrons passing through thin metal foils.

As coordinates for the collective plasma vibrations Bohm and Pines

used those Fourier components of the electron density for which k was

smaller than some cut off value k . They also kept all electron coordinatesc

and thus they had to introduce subsidiary conditions on the wave function to

be justified in treating all considered coordinates independently. These

subsidiary conditions have caused a good deal of trouble and form a weak

point in the Bohm-Pines theory as also does the uncertainty in the choice

of the cut off value k
c

After writing the Hamiltonian in a form exhibiting the collective

coordinates and adding terms containing collective momenta, the effect of

which was nullified by the subsidiary conditions, Bohm and Pines performed

a series of canonical transformations which brought the extended Hamiltonian

on a form having a collective part, a quasi-particle part and supposedly weak

interaction terms. The collective part had essentially an harmonic oscillator

formand the quasi-particle part looked like the original Hamiltonian but

with the coulomb potential replaced by a screened interaction of almost the

Yukawa form, e-Xr/r.

A reasonable first approximation for this Hamiltonian is a product of

harmonic oscillator functions of the collective coordinates and a Slater

determinant of plane waves. The collective part contains the long range cor-

relation and the Slater determinant can be improved by a perturbation ex-

pansion in the short ranged interaction to include short range correlations.

This perturbation expansion is conve gent contrary to an expansion in the

unscreened coulomb interaction, 1I .

In calculating the total energy the collective part is essential and

brings about a very reasonable result, but in treating the single particle

behavior the plasma part can be left out in the first approximation since the
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large excitation energy of a "plasmon" makes it essentially frozen in,

when only the low excitations close to the Fermi surface are considered.

The quasi particle part in the Bohm Pines Hamiltonian has been success-

fully used in evaluating different single particle properties. A good

review of the earlier calculations is given by Pines in Solid State Physics,

vol. 1 (1955). More extended calculations have been made by Fletcher

and Larsson 11) (1958).

THE LINKED CLUSTER INFINITE PERTURBATION EXPANSION

The basic physical ideas behind the single particle behavior of elec-

trons in solids is well described by the Bohm-Pines theory but more

rigorous developments furnishing both exact formal results and quantitative

estimates have utilized field theoretical methods. The first break through

for infinite order perturbation theory treatment of many body systems came

with the work by Brueckner 12) in 1955. Ordinary Rayleigh-Schr6dinger

perturbation theory gives rise to terms of higher and higher powers in the

number of particles N , but Brueckner showed explicitly for the lowest

orders in the expansion that these unphysical terms cancel and he assumed

that this mechanism worked for all orders. That this really is the case was

shown by Goldstone 13) who proved the so called linked cluster theorem. In

the Brueckner-Goldstone expansion every term is represented by a linked

cluster diagram giving a contribution at most proportional to N . Goldstone

utilized methods and results from quantum field theory and his diagrams

were those introduced by Feynman in 1949.

These results were almost immediately followed up by Hubbard 14)

who published two papers in 1957 on collective motions in terms of many-

-body perturbation theory. The first paper was purely formal and has become

a corner stone in this field and the second contained a numerical calculation

of the energy of an electron gas. The results agreed very well with those of

Bohm and Pines.
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THE van HOVE-HUGENHOLTZ QUASI-PARTICLES

Parallel to the Brueckner-Goldstone -Hubbard work, van Hove and

Hugenholtz 15) during the years 1955 to 1958 developed their own technique

to handle the perturbation theory of large quantum systems. They obtained

results which in many respects went further than those of Goldstone and

Hubbard, but since their technique was much more complicated it has not

been so widely used. Their work centered on the properties of the low

excitations in a Fermi gas, and the most important results are perhaps the

following. Consider a low excited eigenstate of an Hamiltonian with no

interparticle interactions. The statevector is a Slater determinant with

N particles filling a Fermi sphere with radius kF and one additional

particle close to the Fermi surface. Switch on the interactions slowly

(adiabatically). The resulting state is then an asymptotically stationary state

of the full Hamiltonian with a decay time proportional to 1/(k-kF)2 . They

also showed that the energy of the perturbed state when the extra particle

is on the Fermi surface is equal to the ground state energy of the N particle

system plus the average energy per particle.

The van Hove-Hugenholtz results apply only to a translationally

invariant system, such as an electron gas, and the assumption that the

infinite order perturbation expansion really converges has later been

criticized by van Hove 16) himself. Even if the series should diverge math-

ematically it could still provide a good asymptotic representation. The re-

sults must be considered as a large step towards the understanding of quasi-

-particles. Their results indicate that it is justified to use a model for the

actual system with a single particle Hamiltonian whose eigenstates are in

one to one correspondence with slowly decaying states of the true Hamil-

tonian. Approximate calculations of the decay time give a mean free path

of the order of 100 000 A at room temperature for an energy of the extra

particle equal to kT 17). That is usually much longer than the mean free

path due to phonon collisions and therefore negligible. The results are,

however, incomplete in the respect that they apply only to the case with one

particle outside a filled Fermi sphere and it remains to show that a model

state corresponding to many excited particles has a true energy which is

the sum of the corresponding quasi-particle energies. One has further to

show that the adiabatic transforms of the low excited model states with all

possible combinations of particles and holes (unfilled states inside the

Fermi surface) really furnish all low excited true states.



THE LUTTINGER TFIERMODYNAMIC APPROACH

A rmore general approach to the concept of a Fermi surface and
properties connected with it has been made by Luttinger 18) in a series of

papers published in 1960 and 1961. His theory is applicable to non-zero

temperatures. The partition function is represented by an infinite series

expansion in a way first developed by Bloch and de Donlinicis 19) in 1958.

The expansion is formally -ery sinilar to the B rueckner-Goldstone

expansion, the Fcynman propagators being modified to include temperature

and a slightly larger class of diagrtns to be considered. In the first two

papers which were Norked out together with Kohn and Ward it was shown

that the extra diagrams in the statistic;d[ mechani'al expansion, so called

anomalous diagrams, in certain cases gave rise to non-zero contributions

in the limit when T goes to '.ero. In these cases, which actually include

the most interesting situations such as a periodic lattice, the Brueckner-

-G-oldstone series hos to be modified. During the detailed investigation

necessary to establish this, several very interesting results appeared as

by-products. Most of these were purely mathematical but for one thing they

established that a certain class of quasi-stationary states of the interacting

system in the translationally invariant case had a life-time proportional to

1/(k-kF)2 . These states are not the same as those considered by Hugen-

holtz and van Hove but are ini-tead related to the Green functions or single

particle propagators used by Martin and Schwinger and others.

In three papers Luttinger derived some very interesting results

subject only to the restriction that the infinite order perturbation theory

should be convergent or at least furnish a good asymptotic representation.

He found that nk , the mean occupation number for the plane wave state

k , had a discontinuity on one or several surfaces in k-space which collec-
20)

tion of surfaces he defined as the Fermi surface of the interacting system

In the translationally invariant case the Fermi surface is determined by the

relation

where ± is the chemical potential, ::k is the enervy in the non-interacting

case, k /2 , and Kk(E) is the redl part of the so called self energy of the
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quasi-particle,

Kk (E) J ~ (2)

where we have plus sign when E < .i and minus sign when E > ± ,

Jk(E) > 0 , J(L) = 0 . The energy of the above-mentioned quasi-stationary
state is

EN t Ek (3)

where EN is the ground state energy of an N-particle system and Ek is
determined by the equation

Ek + (( ) (4)

Jk(Ek) is the inverse of the lifetime of the state.

Luttinger also obtained exact results for the low temperature heat
capacity, the spin paramagnetism, the compressibility and the characteristics
of the de Haas-van Alphen oscillations. Most of the development is concerned
with the translationally invariant situation but the main features of the theory

in the band case are given and also an explicit expression for the heat
capacity. The forms of these expressions are very similar to those in the
non-interacting case. So is e.g. the heat capacity in the interactionless case

proportional to the level density at the Fermi surface calculated from the
orbital energies F k whereas in Luttinger's expression the quasi-particle

energies Ek appear and the integration is taken over the true Fermi
surface. Luttinger also showed that the volume in k-space inside the Fermi
surface is the same in the non-interacting and interacting cases. This means,
of course, that the Fermi surface is unchanged in the translationally in-

variant case, since by symmetry it has to be spherical.
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THE GREEN FUNCTION FORMALISM

Besides the perturbation-theoretic treatment of many-body systems

there is a large branch of research utilizing Green functions. The

Schr6dinger equation is then converted into a chain of coupled differential

equations involving higher and higher orders of Green functions. The

method used to handle this system is usually to insert a specific approx-

imation for say the two-particle Green function and thus closing the system

of equations. Green functions or particle propagators have long been used

in field theory. Their statistical-mechanical versions were introduced by

Matsubara 21) in 1955 and the zero temperature forms were extensively

treated with respect to their spectral properties by Galitskii and Migdal 22)

in 1958. The perhaps most well-known paper in this area is that by Martin

and Schwinger ?3) in 1959.

We will not review any specific work on Green functions but instead

make a development that borrows features from many different papers 24)

and leads straight to the derivation of a single particle equation where the

orbitals and orbital energies have an exact interpretation with respect to

the many body system. The orbital energies are actually identical to the

quasi-particle energies used by Luttinger and the orbitals are simply related

to the first order density matrix of the system. Such an equation was first

derived by Pratt 25) in 1960 starting from a theorem derived by Hugenholtz 15)

and by Bloch and Horowitz 26). Phillips Z7) derived a similar equation in

1961 from Hubbards 14) theory and gave a discussion of the order of magnitude

of the different terms.

SPECTRAL RESOLUTION OF THE ONE-PARTICLE GREEN FUNCTION

The one-particle Green function is defined as

G(,)=- L (N IT( Yt') r(Y ) ) IN>) (5)

where x stands for three space coordinates and the spin and time coordinates.

(x) is the field operator in the Heisenberg representation and IN> is the

state vector for the ground state of an N-electron system. T is the time-

ordering operator placing the operator with the latest time to the left and in-
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serting a minus sign if the operators q4 and t change places. For equal

times G is defined as

where x stands for space and spin coordinates and p(x, x') is the usual

first order density matrix. G has a very direct physical interpretation

which becomes clear if we take say t > t' and rewrite G slightly (EN is

the ground state energy of the N-particle system),

H HEN (7)
Thus G gives the probability amplitude that a particle created at the point

x' at time t' reaches the point x at time t . That statement is actually

not quite true since the states involved are not normalized to unity but the

relation anyhow makes it reasonable to call G a single particle propagator.

We will now consider the spectral resolution of G(x, x'; ') , where

t = t' ,

k
(8)

+~ L

where

6.. = E lA - EN ti Ei- v-i,4

In a HF approximation the state vectors are single Slater determinants and

the g-functions then become the occupied orbitals, the f-functions the virtual

orbitals and the E -values the corresponding orbital energies. In general there

are an infinite number of g-functions. The f-functions and the g-functions

are further not in general normalized to unity and each set has linear depend-

ences between its functions. We now make a Fourier transform with respect

to time,

tooo
-~~ h= 2I4... k

(10)
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To have a unique definition for all c an infinitesimal positive convergence

factor A has been introduced. For a discrete spectrum G has simple

poles at each of the "quasi-particle" energies r k and E I * For a con-

tinuous spectrum the sums are converted into integrals and the poles dis-

appear.

THE SELF -ENERGY OPERATOR M AND THE

QUASI -PARTICLES

It is convenient to introduce the self-energy operator M(x,x') which

can be considered as defined by the relation (the Dyson equation),

G = G0 + GoMG (II)

where Go is the Green function when there are no interparticle interactions

and G MG is a matrix product, x and x' being matrix indices. This rela-

tion becomes very simple when there is translational invariance since a

Fourier transform with respect to space and time then factorizes the matrix

product (Go'(k, E ) = - k and all matrices are diagonal in spin),

KkP Jk' E k' and p. are the same quantities as used by Luttinger. M(k,E )
can be analytically continued to complex values of c , the continuations being

different, however, starting from the part of the real axis where E > pt and

the part where F < p. . We now consider a value of E slightly larger than

Ri . Jk(E ) is then larger than zero but small. We may then assume that

G(k,E ) has a pole slightly under the real axis, say at 1E . By deform-

ing the contour of integration for F in the expression

toIn 6 &(4,e) e'& T (13)

to run as
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_ _ ___ _ .1

we obtain

G(c -Z, .. e r ... . , _ ; -(6k Kk Jk () (4
- . + .... (i4)

The + .... comes from the contribution for E = i + i E 2 since G(k, e )

is different in the upward and downward paths, these paths belonging to dif-

ferent analytical continuations. There could also possibly be more poles

than the one at e and the contour has then to be deformed correspondingly.

Assuming the + .... terms to be small 22) we find that G(k, r) describes

a quasi-particle with energy c k + k - iJk " We can also study G from

its spectral resolution, eq. (8). An approximately exponential dependence

of T will result if the k:th Fourier component of the ff* -products is essen-

tially different from zero only within a narrow energy region for the C k

The center of this region is then i k + Kk and its spread Jk "

THE EQUATION FOR G AND FOR THE AMPLITUDES

We now return to the case with no translational invariance. After

Fourier transforming the Dyson equation, (11), with respect to time, where

we still have translational invariance, and utilizing the relation GO - )
E E - h , where h is the relevant single particle operator, we obtain

(6 -'- M () ) ( S) =1 (15)

where the matrix indices x and x' are suppressed. Inserting the spectral

resolution for G(c ) and the identity

whih i a obtZd rm t c (16)

which is trivially obtained from the anticommutation relation of ti and t
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we obtain

Now let e approach f k and assume that those fk for which the E

are equal, are linearly independent. We then have

This is the single particle equation we set out to derive. The assairixi'n

made about linear independence of the fk is really very weak as can be

checked by considering explicit examples. The fk for different E 1. are

on the other hand by no means in general linearly independent. A similar

equation is of course also obtained for the g The equation is valid vwhen

E N+l, k is a discrete energy level. It is also valid when ENTII is co'nt *

uous if E becomes discrete when we consider only a specific symn-etry o!

the f as in the case of an extra particle in a semi-conductor. 'h.,! firct ro i

trivial approximation to this equation in case of a semiconductor was de'ivci.

by Pratt Z5) (1960). The equation in its general form was sugg-!ste1 by Hedin

and Lundqvist 28) (1960) but the amplitudes g were there erronously ;identi-

fied w.th the Lbwdin 29) natural spin-orbitals.

.Lor a discrete spectrum G(e) and G0 (E) are Hermitian and thus

M(E) = G- (c) - G1 (c) is Hermitian, but for a continuous spectrum M(c)

is not Hermitian in general. We can then consider the equation

(E.- -.. =64 -- (49)

and try to interpret it. When the M-operator is non-Hermitian, th-C t lgn-

values : in general become complex. In analogy with the analysis nmade for

G(:) in the translationally invariant case one might expect that cp corresponI."

to a wave-packet of functions f and the real part of c to their mea- :'ncrg.

In case of one extra electron in an insulator, M remains Hermit;an for a

certain range of c -values. This case has been treated extensively by Koun

and Ambegaokar 30) from a more general point of view than thA. aboe --qua-

tion.
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APPROXIMATIONS TO THE M-OPERATOR

To make the equation useful we now have to obtain approximations to

the M-operator. One method is to make a perturbation expansion for M

which can be represented by a well known set of diagrams. We can also

utilize the Martin and Schwinger 23) method with functional derivatives, and

thus circumvent the usual convergence difficulties. It is then possible to

obtain an expansion in higher and higher orders of correlation functions

T~~"i G~) Tf'1f(4'~).. (20)

where

Each order is obtained by an iteration procedure and the expansion could

reasonably be expected to have much better convergence properties than the
Z

usual one in e • The details of the derivation are evaluated in an appendix

since the possibility of using an iteration scheme is not pointed out earlier

in the literature to the knowledge of the author.

The first approximation is Hartree-like

6k Via- V & ft IV (22)

where 2. (23)V• I ) S Y" ,
and < p (!)> is the true density of the N electron system. The next itera-

tion is,

(k- t I.,) - - (24)
where

((25

and Y x,x') is a screened potential first introduced by Hubbard,

- ~ 6 if(,Y) <Tf(y Ile))~ 6% yAy

' Y-_,_') 0a-b') (26)
If the correlation term in "V is neglected we are back to a HF-like approx-

imation. The correlation term is, however, quite tractable since it is re-
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lated in a simple way to the linear response function of the system, which

in turn can be approximately evaluated from a time-dependent Hartree or

HF treatment. G could be approximated with the solution for the Hartree

or HF-like equation. The next term is much more complicated and hard to

deal with, though Hubbard has tried to include it in a qualitative way in his

treatment of the electron gas. Hubbard 14) treated M( 1) by numerical

methods in the above mentioned approximation (time dependent Hartree

and G = Go) whereas Gell-Mann and Brueckner 31) (1957) and DuBois 32)

(1959) made an expansion in r s , the interparticle distance. This expan-

sion is only valid at most up to r. = 2 , but one could hope that the complete

M(I) term should give a reasonable approximation also in the metallic

density region (r. = 2-5). We will call M(1) the polarization approxima-

tion for M , for reasons which will become clear in the next section.

DISCUSSION OF THE POLARIZATION APPROXIMATION FOR M

The formal properties of-the polarization approximation for M

eq. (25), such as its spectral resolution and its relation to the linear response

function are discussed in an appendix. In this section we will utilize these

results in a discussion of how the approximation works for some simple

physical systems and how it is related to approximations developed by other

authors.

Let us first consider the simple situation of an electron moving well

outside a closed shell ion. The energy levels are then to a first approximation

hydrogen-like. Exchange effects have little influence but the polarization of

the ion by the outer electron gives a small shift of the hydrogen-like energy

levels which has been observed to a fair accuracy ,

A simple and reasonably accurate way to calculate this shift is

furnished by an "adiabatic" approximation 34) The outer electron is then

considered as a fixed point charge which polarizes the ion. The induced

charge density p(x) gives rise to an extra potential *(x), which acts back

on the outer electron,

I S& ')y~1  ~'(27)

1The factor -arises since -grad q(x) has to give the force on the outer elec-



-16-

tron and the gradient acts on both v and p(x') , the latter containing x

implicitly. Calculating the induced charge by linear response we have from

eq. (B16)

#( .R , 0T) =F(1 ;) (28)

where 

F- (% e (29)E ',s " NJO

An equivalent result can be obtained by a quite rigorous treatment.

Since 4O(x) is a small perturbation it is sufficient to consider its

expectation value with respect to the outer electron orbital. Using the assump-

tion that this orbital is well outside the ion and observing that the expression

< 60IN < NS ISl ).(30

EHNS - EN,O
is essentially different from zero only when x and x' are more or less in-

side the ion (the expression (30) is the kernel in the linear response function

and we do not expect much induced charge outside the ion), we can obtain a

good approximation of *(x) by making a multipole expansion of the coulomb

potentials. The constant terms vanish and if we keep only the dipole terms

we have

and thus

(32)

where a is the static polarizability of the ion. This result can also be ob-

tained from a very simple argument as shown by Born and Heisenberg 35) in

1924.

We now want to show how the polarization approximation for M can

reproduce eq. (28). From the appendix, eq. (B4), we find that M ( l ) is equal

to a HF-like exchange term, which we neglect in this case, plus a polariza-

tion potential Vp * From eq. (B 10) we have,

pt (3
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where fk is the outer orbital we are considering, and terms with Fl<<

have been neglected since they contain ion orbitals and thus are small where

fk is appreciable. Since the ion has a closed shell structure we can assume

that the ion excitation energies are much larger than the differences k - k'

for those k' where fk' and fk have significant overlap. Thus we approxi-

mate

(34)

and have by that obtained the same approximation as the "adiabatic" one.

Another method to approximate the polarization approximation is ob-

tained by making an assumption about the time behavior of G and I/

*/ (T) without the polarization part is simply v(r) which contains a 6-function

in - . We now assume that polarization does not broaden this 5-function peak

too much, so that the time variation of G(r) within the peak still can be

neglected except for the discontinuity of G( ) at T = 0 . Using the HF-

-approximation for G we have

6(&;z 'C' (35)

where (- >Q

0 -C < 0 -ihOur assumption about the time dependences amounts to putting e = 1

Using the identity

~i 'C .' oce-A' U (36)
we then have

OA k Ui4opS& 4- (37)

From (A25) and (37) we obtain

(38)
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Since v(T+) 0(-:) = 0 we are allowed to put an extra v into the first term

of the last member of (38), thus emphasizing that this term only contains

the polarization part of V . Performing a Fourier transform with respect

to time we have, compare with (B6),

(01) 1 OLG

M(x. x'; 0) thus gives the "adiabatic" a proximation with one modification,

namely we have a screened potential instead of v in the exchange term.

This modification makes no difference in the ion plus outer electron case

since there the exchange term anyhow is small. For an electron gas on the

other hand it is the second term rather than the first which is important.

The first term is local in space and thus by translational invariance it is a

constant and gives only a constant shift of the quasi-particle energies. The

second term is similar to the one used by Pines 36) to evaluate single-particle

properties, though the screening lengths are somewhat different. Thus e.g.

the anomaly for the specific heat of an electron gas which appears in a

HF approximation, is not present when a screened potential is used, as

showxn already by Wohlfarth

Although the first term is trivial for an electron gas it may be quite

important for a real solid. This term has been considered by Callaway 8) for

alkali metals. Unfortunately for this discussion he only estimates its effect

on the cohesive energy rather than on the band structure. Phillips 27) argues

from a different type of approach that this term should have little importance

in the weakly periodic case. It should, however, be realized that even though

this term might be essentially constant within a band it could eiffer

appreciably between bands. Another type of approach using a "projected

wave field" has recently been made by Bassani, Robinson, Goodman and

Schrieffer 37). This approach is adepted to utilize the rapid convergence of

the '"Orthogonalized Plane Wave" method. The basic physical idea is that

the core electrons can be treated dynamically independent of the valence

electrons.

If we should like to calculate Mi) through the linear rerponse

function and want to keep the approximation (39), we have to take it in the

static limit, that is c = 0 . The complete expression for the real part of

V is given by (B24). It involves the real part of the response function as

well as the imaginary part which is a kind of oscillator strengLh, R(Z)I)

gives a -measure of the probability for a transition between the ground state
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hA been carried out.

Also in the present context we are faced with a self-consistency

problem. When a specific type of approximation for the M-operator is

chosen we have to iterate to obtain self-consistently the orbitals which

form the propagator G . In a specific step of this procedure, solving for

the orbitals using a rough potential, we may of course utilize the varia-

tional principle. We may also convert this intermediate problem to ma-

trix form, expanding the orbitals in a fixed truncated basis set of say

r functions. The r orbital solutions we then obtain provide the corre-

sponding truncation of the infinite summation appearing in V (1) eq. (BZ4).P

The present formalism is so far inadequate in treating multiplicity

splittings. The main applicability is to atoms, molecules and solids with

one electron outside a closed configuration and to metals where there are

Lo many electrons outside a closed configuration (the ions) that coupling

between spins of different conduction electrons become unimportant.

The instability sometimes observed in calculating orbital energies

in the HF method could very well be related to this failure of taking

multiplicity splittings into account. The density matrix is, however, quite

9table and that is all that is needed as regards the excited orbitals.

Specifically as regards band structure the exact theory makes predictions

only for excitations close to the Fermi surface and there is hence an addi-

tional reason to regard the lower bands as less significant.

It should finally be recognized that the development given in the last

'ew sections of one-electron behaviour is by no means complete. Thus e.g.

the vibrations of the atoms can very well give an influence on the quasi-

-particle spectrum comparable to the polarization effects 38) Further in

considering transport processes not only the quasi-particle spectrum is

important but also the effective field inside the solid, the calculation of which

is quite a problem in itself. Transport processes are perhaps most effective-

ly treated with the temperature dependent Green function formalism.
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APPENDIX

A. APPROXIMATION OF THE M OPERATOR

THROUGH AN ITERATION PROCEDURE

The equation of motion for the field operator in the Heisenberg repre-

sentation is

)tL (Al)

After evaluating the commutator we have

~ 1~~) Y(%~f(X')kJ) (Ok~~ %(AZ)
whe re

(A3)

The functions uk form a complete orthonormal set and ak is an annihila-

tion operator. An equation for the Green function is now easily obtained from

(A2),

where

(ii) - , ) A > 0 /7,d in/i,,f S, , .

In eq. (A4) the first and second order Green functions are coupled. Martin

and Schwinger 23) have shown that the term with G(l, 2; 1', 2') can be ex-

pressed as a functional derivative of G(1,2) . Since their proof is rather

complicated and not very explicit we will rederive the functional derivative

expression by elementary methods.

Consider a Hamiltonian H in the Schrbdinger picture
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H H s 1 +4" ws') (A6)

where H s(0) is identical with the Hamiltonian H defined in (A3) and ws(t)

is a small perturbing time dependent potential

where w(x, t) is taken as spin independent (x involves in general both space

and spin). The time evolution of the state vector in the Schr8dinger picture

is described by an operator V(t,t'),

Since It> satisfies the Schr8dinger equation, V(t,t') has to satisfyV v(t, to) =(H: ) v,' vOt,l (A 9A)

iH(t -t')
We also introduce the unperturbed time evolution operator U(tt') = e

which satisfies HS'.(:€ U (A, 10.,)

The differential eq. (A9) is then converted into an integral eq.

V( j t it (t (A 11)

The crucial quantity we need is the functional derivative of V(t, t') with

respect to the perturbing potential w(x, t) , which from (A 11) becomes,

v.t .! - __"_(_,_._

when t 2 is in the time interval determined by t and t' , otherwise Z is

zero. Putting w = 0 in (A12) we have

n (-t (A 13)

The general expression for the functional derivative in question is

f*v = "') "
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as can be verified by substituting (A14) into (A12).

It is convenient to introduce the following type of expectation values

to use in the Green functions

where 4PH(x) = V(t_,t)dP(x)V(t,to) o We consider t0 to be some time in the

distant past and Ito>, to be the ground state of H . T is a time far in tle

future and we do not allow w(t) to be different from zero for other t than

those in the interval between t and T . When w(t) is zero for all t t]-c

definition (A15) gives the expectation value of Heisenberg operators with

respect to the ground state, cf eq. (5). The matrix element in (A15) has the

same structure as those used in scattering theory, that is a matrix element

between unperturbed states at times far in the future, U(T, t )It > , and
0 01

far in the past, Ito >s , with a scattering matrix V(T, t0) inserted.

With the present definition of matrix elements the equation for G(1, 1')

becomes

-~~~ ~ ir 1 ))~~'4v~zG ziz )S (A 16)

The term containing the second order Green function can be rewritten by aid

of the equation -~ T'-,; >
(A17)-- - , "V " + ;,,sCug< A'at>

Thus equation (A16) becomes

where

0~i + .% (A 19)

To obtain an iteration procedure for solving (A 1.8), it is essential to introduce

the inverse of the Green function,

We further note that

G___ w()~ zj, ()~zL\I
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We choose to define the zero order Green function by the Hartree-like equa-

tion,

and hence the self energy operator M becomes

N(AZ3)

since (A23) inserted in (A18) gives

With a specific approximation for M , the corresponding approximation for

G can be obtained from eq. (AZ4) and put back into eq. (AZ3), thus giving

the next iteration step in the approximation sequence for M . The first

approximation for M is obtained by using G (0 ) in eq. (A23),

9 - ) V(0) 1 -() _ (A5)

Here the Hubbard effective potential has been introduced,

(A26)

The next approximation for M is obtained by calculating G(1) from the

equation

and then use the solution in (A23),

Tno 

(A 8)

To calculate the functional derivative of M( l ) we need those of G( 0 ) and /,
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W.D E

- q (A29

- wl q) " 1.() G(2,) <-(f4z (i A

The expression for M tZ' becomes,

- Gv0(1 a.)S vf 6(,- ,) Y 7 ,.' ',) I) (ji--
(A30)

If we use the symbols

G (Ix) (A31)

the approximation we have now obtained for V+M can be written (we neglect

the difference between G(O) and G( , and represent them with the symbol

for G),, I

..-" ' 0  + + (A32)

where p (3) stands for the three particle correlation function in eq. (A30).

The first term in M ( 1) and M(2) obviously converges to iG(1, 2)-V'(I, 2),

and we have not always been careful to state what kind of approximation for

G is considered. The perturbing potential w is of course to be put equal

to zero once the expression for the required approximation has been obtained.
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B. THE SPECTRAL RESOLUTION OF M(I) AND ITS

RELATION TO THE LINEAR RESPONSE FUNCTION

We Fourier transform eq. (A24) with respect to the time difference,

t-t' = "C

For the M operator we take the approximation (A25)

The v(1+,2) term in 1/(I,2) , eq. (A26) gives a HF type exchange term,

! 6(1,% i r v(g_,,) ) e'  r 4/' :Lf ;, -. ,_-,d) T=

For the remaining part of the M operator we introduce the name polariza-

tion potential, Vp (1,Z;) ,

M ,,-1; ) = - '(%_,,. -) f,Let) -+ V (4 ,.X2. (B4
The spectral resolution of G has already been given, eq. (10). We rewrite

it in a slightly more compact form

(B 5)

where cpm stands for both the fk and the g, and em is either ek - iA

or c1 + iA . Since ck > V > e1 the poles of G(1, 2; 6) are distributed

according to figure 2.

Xa(A __ Figure 2.

Note that is somewhat arbitrary for a discrete spectrum and could there

be taken as e.g. the mean value of the smallest ek and the largest e1 "

We also make a spectral resolution of the part of Y/ that remains after v

is taken away,



-28-

t < e-P0S > r
__"___(___a - [1 -'() : = (,;)+F,;- (B,6)

6~~~~( 6) (,2;)-

The prime on the sums stands for deleting the term with s = 0 . In writing

the last step of (B6) we have used the fact that 7- T(-) P SAO ) is real,
which is true also when we use complex wave functions. Thus we have for

the polarization potential V ,
P

We first consider the evaluation of a typical term of the contribution from

F(1, 2; c') ,

-'-. 'e+ (B !, 8)

We can close the contour by a large semi circle in either the upper or the

lower half plane since the integral tends to zero as fast as (E )- . We
choose the upper half plane in this case and thus we have a contribution only

when em corresponds to a particle, Em = IEk

(-)I ; (t" -"-) (B 9)

The imaginary part of m can now be absorbed in i A and we consider
em to be real henceforth. The contribution from F(1, 2; -iE') is obtained

similarly by closing the contour in the lower half plane. The complete ex-

pression for V becomes,
p

21 #(m(# PS ) 9(63 (x)

(B 10)
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We now want to relate the polarization potential V p to the linear response

function R . To obtain R we consider a small external charge density,

Pex(x, t) , and calculate in a linear approximation the induced charge

density Pind(X, t) . This induced charge density gives rise to an induced

potential 4(x, t) We define R by the relation

#I ii~ I Itf' (B 11)

The induced charge density, Pind from a perturbing potential w , is

according to (A8) and (A 1I), in the linear approximation,

fild <to 140P0 V}(oa) / 1I0> - <4IV(i' fa) 11iJph>t

<. ' o IEr 09 ), (s,(_../. 0110 (B 12)

We take, cf eq. (A7),

MrS (1) J'9(..') 1A_._t')fy,,_.',,) /%/,Jr (B 13)

From (B 12) we then have, putting to = -0,

- ))

and comparing with (B II) we obtain

R i,.;,-)=- $Q64 C po() f(2!)Jjo~> v )(,1 t9 4Y1},() . (B 15)

When we compare R with the polarization part of , eq. (A26), we find

that the main difference is that R has a commutator instead of a time-

-ordering operator. The Fourier transform of R with respect to time is,

,A..-) S X.K.;z)e I ' eri (F.;. + F(IA.;- 6)). (B16)

The reason that we have taken 0 to co as integration limits rather than -0c

to oc, is that R(l,2; r) does not appear for r< 0 in eq. (BIt). We now

relate the imaginary part of Vp to R . From the definition of F we

have that,

I:J , .641)) E - 0 for e< 0 , (B17)



-30-

and thus from (B 10) and (B 16),

(B 18)
where we have used the relations,

forE >0
(B 19)

From (B 18) we find immediately,

V-- (B20)

which relation has to be satisfied from general considerations, as shown by

Luttinger. We next want to relate the real part of Vp to R , and to that

end we write,

F 'tx.,6) =-- ')(,'X) --) + 6)U(> -F( , --)  (B21)

The second term of (B21) can be expressed in R (?)  Since

i+> -  21 ,+(v (3(6+*4) - - )(BZ)
6

we have

From (B 10), (BZ1), and (BZ3) we finally have,

(1) 7 ?-- ('- R

V- (',2.;6 21 f, (_ 90 a(L) , ; -) ++ .(
V?0
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